Find all of the roots of unity, Zn, in the case that (Zn)^6=1

Here we use the complex exponential form of 1 which is e^(i 2n pi). Applying the sixth root and substituting in for integer values of n gives all roots in complex exponential form.These can be converted into a complex number of the form a +ib by using e^ix = cosx +isinx

CR
Answered by Callum R. Further Mathematics tutor

2501 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


Integrate (4x+3)^1/2 with respect to x.


Find the values of x where x+3>2/(x-4), what about x+3>2/mod(x-4)?


Find all square roots of the number 3 + 4i.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning