Find all of the roots of unity, Zn, in the case that (Zn)^6=1

Here we use the complex exponential form of 1 which is e^(i 2n pi). Applying the sixth root and substituting in for integer values of n gives all roots in complex exponential form.These can be converted into a complex number of the form a +ib by using e^ix = cosx +isinx

CR
Answered by Callum R. Further Mathematics tutor

2675 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

State the conditions by which a Poisson distribution model may be suitable for a given random variable X.


How do you invert a 2x2 matrix?


Find the first three non-zero terms of the Taylor series for f(x) = tan(x).


Prove that sum(k) from 0 to n is n(n+1)/2, by induction


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning