Work out the angle between the two tangents of the curve y = sin(x) at y = 0 and y = 1

First we take the derivative of the function, this gives us dy/dx = cos(x)
Now we work out the different x values for y = 0 and y = 1.
sin(x) = 0 => x = 0, sin(x) = 1 => x = pi/2 (90 degrees)
We then substitute these values into dy/dx which gives us two gradients of 1 and 0 respectively
We can then work out the angle between these two values as the difference between the tangents of the two gradients
(angle = tan(m), this gives us the answer of 45 degrees (angle = tan(1) - tan(0))

KJ
Answered by Kieran J. Maths tutor

1375 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Find an equation for the straight line AB , giving your answer in the form px+qy=r, where p, q and r are integers. Given that A has co-ordinates (-2,4) and B has co-ordinates (8,-6)


dy/dx = 6x^2 - 3x + 4 when y=14 x=2 Find y in terms of x


A triangle has vertices A(-3,5), B(7,9) and C(2,11). What is the equation of the median that passes through the vertex C?


Solve log_2(3x + 7) = 3 + log_2(x – 1), x > 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning