Work out the angle between the two tangents of the curve y = sin(x) at y = 0 and y = 1

First we take the derivative of the function, this gives us dy/dx = cos(x)
Now we work out the different x values for y = 0 and y = 1.
sin(x) = 0 => x = 0, sin(x) = 1 => x = pi/2 (90 degrees)
We then substitute these values into dy/dx which gives us two gradients of 1 and 0 respectively
We can then work out the angle between these two values as the difference between the tangents of the two gradients
(angle = tan(m), this gives us the answer of 45 degrees (angle = tan(1) - tan(0))

KJ
Answered by Kieran J. Maths tutor

1111 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Find the stationery points of x^3 + 3x^2 - 24x + 7 and determine whether the slope is increasing or decreasing at x=3.


Differentiate the equation: 3x^2 + 4x + 3


How do I find the dot product of two 3-dimensional vectors


Solve algebraically the system of equations: 4x+5y=-3 and 6x-2y=5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences