Work out the angle between the two tangents of the curve y = sin(x) at y = 0 and y = 1

First we take the derivative of the function, this gives us dy/dx = cos(x)
Now we work out the different x values for y = 0 and y = 1.
sin(x) = 0 => x = 0, sin(x) = 1 => x = pi/2 (90 degrees)
We then substitute these values into dy/dx which gives us two gradients of 1 and 0 respectively
We can then work out the angle between these two values as the difference between the tangents of the two gradients
(angle = tan(m), this gives us the answer of 45 degrees (angle = tan(1) - tan(0))

KJ
Answered by Kieran J. Maths tutor

1283 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Given f(x) = (x^(2)+(3*x)+1)/(x^(2)+(5*x)+8), find f'(x) and simplify your answer.


Express '2x^2 + 8x + 30' in the form 'a(x+b)^2 + c'


Differentiate (with respect to x), y=2x^2+8x+5.


Given that, dy/dx = 6x^2 - 3x + 4, and y = 14 when x = 2, express y in terms of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning