Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)

"General Solution = Complimentary Function + Particular Integral"AE: m2 + 7m + 12 = 0 solve for m(m+3)=0m = -4 or -3Hence the Complimentary Function = Ae-4t + Be-3t
PI: [substitute u=ke-t]u'=-ke-tu''=ke-t[Comparing coefficients we get:]k-7k+12k=2Hence, k = 1/3.PI = 1/3 * e-tSo the general solution is:x=Ae-4t + Be-3t+ 1/3 * e-t

EO
Answered by Edward O. Further Mathematics tutor

3276 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


Can you show me how to solve first order differential equations using the integrating factor method?


Find the general solution of the second order differential equation: y''+2y'-3 = 0


Solve the following, giving your answers in terms of ln a: 7 sechx - tanhx =5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning