A cannon is fired at 30 degrees from the ground and the cannonball has initial velocity of 15 m/s. What is the height of the highest point the cannonball reaches and how far is this point horizontally from the cannon?

With this type of question always draw a diagram with the values on it. We can assume the positive direction is upwards. Start with considering the vertical motion and use SUVAT. s= ? (this is what we are looking for- the height above the ground of the cannonball). u= 15sin30 = 7.5 m/s (this is the vertical component of the initial velocity of 15 m/s). v= 0 (the vertical component of velocity at the highest point is always zero). a= -g = -9.81 m/s2 (this is acceleration due to gravity- it is negative because it is acting downwards). t is unknown so we use the corresponding suvat equation (without t in it) v2 = u2 + 2as . Rearrange for s and plug in values to find that s= 2.87 m (height at the highest point). Consider the horizontal motion ( where horizontal velocity is constant for projectile motion). distance = speed x time = 15cos30 x t. Find time using v=u+at from vertical values, as vertical and horizontal time are the same. t= 0.76 s . So the horizontal distance of the heighest point is x= 15cos30 x 0.76 = 9.87 m (horizontal distance from highest point).

EV
Answered by Elena V. Physics tutor

8211 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car moves from rest and accelerates uniformly at 4m/s/s, how far will it have traveled after 10 seconds?


A crane is attached to one end of a steel girder, and lifts that end into the air. When the cable attached to the end of the girder is at 20 degrees to the vertical, the tension is 6.5kN. Calculate the horizontal and vertical components of this force.


A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.


Discuss how the graph of orbital velocities in rotational galaxies against distance from the galactic centre implies the existence of dark matter.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning