Why do transition metals form coloured solutions?

White light is a mixture of different colours of light (e.g red, green and blue) and each colour has a different wavelength. For something to have colour, it needs to absorb certain wavelengths (or colours) of light. What's left over is what we see. So how do transition metals do that?

When they dissolve in solution, they don't exist as isolated ions but are surrounded by ligands (in aqueous solutions they're water molecules). These ligands donate a pair of electrons to the positive metal ion in a dative covalent bond. For example, iron forms [Fe(H2O)6]2+ which is pale green. These ions are called complex ions.

All transition metals have electrons in their d orbitals, which are electrostastically repelled by those donated by the ligands. Since d orbitals have different shapes and orientations, they're not all repelled to the same extent: for an octahedral complex ion, the ligands are placed at the 6 corners of the octadedron. The dzand dx2-y2 are pointing to those corners and so are repelled a lot. The other three d orbitals don't point directly towards the ligands and so are repelled less. Therefore, the dzand dx2-yorbitals are at a higher energy than the other three, and so an energy gap is created, called d orbital splitting.

When light shines on the solution, wavelengths of light that have an energy equal to the energy gap between the two sets d orbitals take electrons in the lower energy orbital to one at the higher energy level. The wavelengths left behind are what we see!

YB
Answered by Yusuf B. Chemistry tutor

12814 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

This question is about the ionisation energy of elements across a period. a) Define ionisation energy. b) Explain the trend in ionisation energy across a period.


A) What assumptions are made about ideal gases. B) if 14g of an ideal gas is added to a 4 dm3 container at 210Kpa pressure and a temperature of 40oc how many moles were added and suggest the identity of the gas.


Why does reacting a bromoalkane with ammonia result in a quaternary ammonium salt and not an amine?


What is the difference between benzene and cyclohexene?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning