Let f(x)=x^x for x>0, then find f'(x) for all x>0.

A common misconception from many students when tackling this problem is that they think the usual 'power rule' works. However, in this case the power is itself a function of x and not just a constant, so this would not work. To solve this problem, we will have to 'get rid' of the power. We will do this using the natural logarithm. ln(f(x))=xln(x) (1)Differentiating (1) and using the product rule on the right hand side and the chain rule on the left hand side, we get f'(x)/f(x)=ln(x)+1 Lastly rearranging for f'(x) and substituting for f(x), we derived f'(x)=x^x ( ln(x)+1) as required. This technique is known as logarithmic differentiation.

MF
Answered by Michael F. Further Mathematics tutor

1685 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n


In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences