Let f(x)=x^x for x>0, then find f'(x) for all x>0.

A common misconception from many students when tackling this problem is that they think the usual 'power rule' works. However, in this case the power is itself a function of x and not just a constant, so this would not work. To solve this problem, we will have to 'get rid' of the power. We will do this using the natural logarithm. ln(f(x))=xln(x) (1)Differentiating (1) and using the product rule on the right hand side and the chain rule on the left hand side, we get f'(x)/f(x)=ln(x)+1 Lastly rearranging for f'(x) and substituting for f(x), we derived f'(x)=x^x ( ln(x)+1) as required. This technique is known as logarithmic differentiation.

MF
Answered by Michael F. Further Mathematics tutor

2158 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


How to determine the modulus of a complex number?


How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning