Explain why objects in free fall drop to the ground at the same speed, regardless of their mass.

An object in free fall is only subject to the gravitational force from the earth. The magnitude of this force is mg, where m is the mass of the object. Newton's second law states that the force on an object is equal to it's mass times the acceleration it experiences, F=ma. Equating the two, mg=ma, and thus a=g. The acceleration is therefore independent of mass as m does not appear in the equation of motion.

JG
Answered by James G. Physics tutor

2033 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I find an area in m^2 when I'm given lengths in cm?


A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?


How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?


What is the optimum angle to throw a snowball for maximum horizontal displacement? (Ignore air resistance, assume the snowball is thrown level with the ground. The angle is measured from the ground up)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning