How does the photoelectric effect (gold leaf experiment) demonstrate the particle nature of light?

A certain amount of energy is required to eject an electron from a metal surface. The gold leaf experiment shows that only light above a certain threshold frequency is able to eject electrons. If the frequency of the light incident on the metal surface is even slightly below this threshold frequency, then no electrons will be ejected; no matter how intense the light source is. This seems counterintuitive as we know that light intensity is proportional to power, and hence proportional to energy. This can be explained by looking at light as stream of particles, (called a photons). A photon's energy is proportional the its frequency, E = hf (where h is planks constant = 6.63 x 10^-34 Js). One photon interacts with one electron. So for an electron to be ejected by a photon; the photon's energy must be greater than or equal to that required to eject the electron. This energy divided by planks constant is the threshold frequency. So if the frequency of a photon is below the threshold frequency, it's photons will not have enough energy to eject an electron, so no electrons will be ejected no matter how many of these photons are fired at it. The number of photons is proportional to intensity; hence intensity will have no effect on the emission of electrons.

MC
Answered by Molly C. Physics tutor

12400 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A light wave with wavelength 590nm shines upon a metal and causes it to emit an electron with a speed of 5x10^5 m/s. What is the work function of the metal?


What is the change in temperature of 2kg of water heated by a kettle using a voltage of 230V at 0.5A of current for 10 seconds? Assume no heat losses.


What is escape velocity?


How would we calculate the distance covered by a train that starts at rest, then accelerates to 5km/hr in 30 mins then stays at this constant speed for 12 minutes?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning