How does the photoelectric effect (gold leaf experiment) demonstrate the particle nature of light?

A certain amount of energy is required to eject an electron from a metal surface. The gold leaf experiment shows that only light above a certain threshold frequency is able to eject electrons. If the frequency of the light incident on the metal surface is even slightly below this threshold frequency, then no electrons will be ejected; no matter how intense the light source is. This seems counterintuitive as we know that light intensity is proportional to power, and hence proportional to energy. This can be explained by looking at light as stream of particles, (called a photons). A photon's energy is proportional the its frequency, E = hf (where h is planks constant = 6.63 x 10^-34 Js). One photon interacts with one electron. So for an electron to be ejected by a photon; the photon's energy must be greater than or equal to that required to eject the electron. This energy divided by planks constant is the threshold frequency. So if the frequency of a photon is below the threshold frequency, it's photons will not have enough energy to eject an electron, so no electrons will be ejected no matter how many of these photons are fired at it. The number of photons is proportional to intensity; hence intensity will have no effect on the emission of electrons.

MC
Answered by Molly C. Physics tutor

12241 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

You are sitting in a boat on a lake, you have with you in the boat a large rock. You throw the rock out of the boat and it sinks to the bottom of the lake, does the water level of the lake go up, down or stay the same?


A satellite is in a stationary orbit above a planet of mass 8.9 x 10^25 kg and period of rotation 1.2 x 10^5 s. Calculate the radius of the satellite's orbit from the centre of the planet.


A linear accelerator (LINAC) is used to accelerate protons at CERN before they are injected into the Large Hadron Collider. Explain with the aid of a diagram how the proton is accelerated by the LINAC.


Two pellets are fired simultaneously from the horizontal, one is fired vertically at 100m/s and the other is fired at 200m/s at an angle theta from the horizontal. Calculate the angle of the second pellet if they both land at the same time.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning