Answers>Maths>IB>Article

Solve (sec (x))^2 + 2tan(x) = 0

Using the trigonometric identity: (sec(x))^2 = (tan(x))^2 + 1 we get to (tan(x))^2 + 2tan(x) + 1 = 0. We can express this result as the multiplication of 2 equal factors arriving at (tan(x) + 1)^2 = 0. This leads us to tan(x) = -1. Therefore the answers will be x=3pi/4, 7pi/4

LL
Answered by Lina L. Maths tutor

2049 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

dy/dx = 10exp(2x) - 4; when x = 0, y = 6. Find the value of y when x = 2.


Given that sin(x) + cos(x) = 2/3, find cos(4x)


Can you explain the approach to solving IB maths induction questions?


The velocity of a particle is given by the equation v= 4t+cos4t where t is the time in seconds and v is the velocity in m s ^-1. Find the time t when the particle is no longer accelerating for the interval 0≤t≤2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning