Answers>Maths>IB>Article

Solve (sec (x))^2 + 2tan(x) = 0

Using the trigonometric identity: (sec(x))^2 = (tan(x))^2 + 1 we get to (tan(x))^2 + 2tan(x) + 1 = 0. We can express this result as the multiplication of 2 equal factors arriving at (tan(x) + 1)^2 = 0. This leads us to tan(x) = -1. Therefore the answers will be x=3pi/4, 7pi/4

LL
Answered by Lina L. Maths tutor

1825 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

When finding single or multiple probabilities using the binomial distribution on the calculator, which function do I use respectively?


The sum of the first n terms of an arithmetic sequence is Sn=3n^2 - 2n. How can you find the formula for the nth term un in terms of n?


Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256


Given that y = -16x2​​​​​​​ + 160x - 256, find the value of x giving the maximum value of y, and hence give this maximum value of y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences