Answers>Maths>IB>Article

How to prove that Integral S 1/(a^2+x^2) dx= 1/a arctan(x/a) + C ?

In order to answer this question, at first we need to use the method of substitution. That means, we're trying to replace x with a different variable u. Lets use the substitution of x = a tan u, then du/dx = a (sec u)^2. From that we can substitute both x and dx with the new variable u. As such S 1/(a^2 +x^2) dx becomes S 1/(a^2 + (a tan u)^2 * a (sec u)^2 du, or S a (sec u)^2/ a^2 (1 +(tan u)^2 ) du. Using tigonometric identities, we can simplify 1+(tan u)^2 to (sec u)^2 obtaining S (1/a) * (sec u)^2/ (sec u)^2 du = 1/a S 1 du. That would be equal to 1/a * u +c.Last part of the question is how to find u. Since we know that x = a tan u, we also know that x/a = tan u, that means that for arctan (tan u) = arctan (x/a) and thus, u = arctan (x/a). Therefore the S 1/(a^2 +x^2) dx = 1/a * u +c =(1/a) arctan (x/a) +C

JW
Answered by Judyta W. Maths tutor

5262 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


When the polynomial 3x^3 +ax+ b is divided by x−2 , the remainder is 2, and when divided by x +1 , it is 5. Find the value of a and the value of b.


A scalene triangle has base of 5cm. The angle opposite to the base is 63°, and a second angle is 72°. Find the area of the traingle


Solve the integral int(sin^2(x))dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning