Given f(x) = (x^(2)+(3*x)+1)/(x^(2)+(5*x)+8), find f'(x) and simplify your answer.

Taking: f(x) = (x^(2)+(3x)+1)/(x^(2)+(5x)+8)
An application of the quotient rule of differentiation is required. This rule is given as:
Where g(x) = u(x)/v(x), g'(x) = ((u'(x)v(x))-(v'(x)u(x)))/(v(x)^(2))
Hence for the case of the f(x) given, f(x) = (x^(2)+(3
x)+1)/(x^(2)+(5
x)+8)is deconstructed to:
u(x) = x^(2)+(3x)+1v(x)=x^(2)+(5x)+8
Hence:
(v(x))^2 = (x^(2)+(5x)+8)^2
Applying a simple method of differentiation gives:
u'(x)= (2
x)+3v'(x)= (2x)+5
Thus, bringing all the constituents together and entering them into the quotient rule formula:
f'(x) = ((u'(x)v(x))-(v'(x)u(x)))/(v(x)^(2))f'(x)= ((((2x)+3)(x^(2)+(5
x)+8))-(((2x)+5)x^(2)+(3x)+1))/(x^(2)+(5x)+8)^2)
Expanding and collecting like terms:
f'(x)=(2x^(2)+(14x)+19)/((x^(2)+(3*x)+1)^2)
This is as far as this expression can be simplified and hence the question has been answered fully.
Teachable points:Difference in degree is clearly -1 as is required by the definition of differentiation from first principlesThe f'(x) can be described as the rate of change of f(x) and can be used to quantify how f(x) varies as x variesFurther investigation into the graph of y=f(x) could occur from this, eventually allowing the plotting of this graph

AM
Answered by Andrew M. Maths tutor

1604 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

A circle has equation x^2+y^2-8x+10y+41=0. A point on the circle has coordinates (8,-3). Find the equation of the tangent to the circle passing through this point.


How do I find the dot product of two 3-dimensional vectors


Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


Given x^3 + 4x^2 + x - 6 = 0 , and one of the factors of this equation is (x-1), factorise and hence compute the other solutions for the eqaution.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning