Answers>Maths>IB>Article

Find integer solutions for m - n(log3(2)) = 10(log9(6)).

From the properties of logarithms (logba = logca / logcb), 10log96 can be rewritten as 10(log36 / log39). Since log39 = 2, 10log96 = 5log36. We then bring both log terms to the same side of the equation: m = 5log36 + nlog32. Again, from log properties (a(logcb) = logcba), this can be rewritten as m = log365 + log32n. Since the logarithms have the same base, we can combine them using another log property (logab + logac = logabc). This yields m = log3652n. We can factor out the 25 from the 65 to obtain m = log335252n. Combining the 2s: m = log33525 + n. We then raise 3 to the power of both sides to get an equation without logarithms: 3m = 3525 + n. We can write an invisible 20 term on the left side without changing the equation, giving 3m20 = 3525 + n. Since m and n are integers, m = 5 and 5 + n = 0, meaning n = -5. So the solution is m = 5, n = -5.

TK
Answered by Tristan K. Maths tutor

11052 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve: 1/3 x = 1/2 x + (− 4)


Let f (x) = 5x and g(x) = x2 + 1 , for x ∈  . (a) Find f-1(x) . (b) Find ( f ° g) (7) .


Find an antiderivative to the function f(x) = e^x cos(x)


a) Let u=(2,3,-1) and w=(3,-1,p). Given that u is perpendicular to w, find the value of p. b)Let v=(1,q,5). Given that modulus v = sqrt(42), find the possible values of q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning