How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i

For a polynomial with real coefficients, use that roots come in complex conjugate pairs. Therefore, another root is 2-i (and we know for this example that the final root must be real). Write the factorised function from what we know so far. For this polynomial, the factorised equation must therefore look like (z-z1)(z-z2)(z-z3) where z1 and z2 are the 2 already known roots, and z3 is real.Expand the known part. Expanding (z-(2+i))(z-(2-i)) gives (z^2 -4z +5) - be careful with the algebra when expanding. Comparing coefficients of (z^2 -4z +5)(z-z3)=z^3 -3z^2 + z + 5 shows that z3 is -1.An Argand diagram plot is simply a plot of imaginary against real components. The roots are (2+i1), (2-i1), and (-1 +i0), so the points to plot will be (2,-1), (2,+1), and (-1, 0).

ES
Answered by Edward S. Further Mathematics tutor

4887 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


Calculate: ( 2+i√(5) )( √(5)-i).


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences