How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i

For a polynomial with real coefficients, use that roots come in complex conjugate pairs. Therefore, another root is 2-i (and we know for this example that the final root must be real). Write the factorised function from what we know so far. For this polynomial, the factorised equation must therefore look like (z-z1)(z-z2)(z-z3) where z1 and z2 are the 2 already known roots, and z3 is real.Expand the known part. Expanding (z-(2+i))(z-(2-i)) gives (z^2 -4z +5) - be careful with the algebra when expanding. Comparing coefficients of (z^2 -4z +5)(z-z3)=z^3 -3z^2 + z + 5 shows that z3 is -1.An Argand diagram plot is simply a plot of imaginary against real components. The roots are (2+i1), (2-i1), and (-1 +i0), so the points to plot will be (2,-1), (2,+1), and (-1, 0).

ES
Answered by Edward S. Further Mathematics tutor

5054 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication


write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


How do you invert a 2x2 matrix?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences