You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.

Since x=5+i is a solution to f(x)=0 we then know that x=5-i must also be a solution to f(x)=0, by the complex conjugate root theorem.Now we can break f down into the product of a polynomial and these two known roots;f(x)=(x-(5+i))(x-(5-i))p(x), where p(x) is to be found. Expanding brackets then gives us that;f(x)=(x^2-10x+26)p(x) We can then divide f(x) by (x-10x+26) to find p(x), and hence express f as the product of two quadratic polynomials. f(x)=(x^2-10x+26)(x^2-4x+8)Then by using the quadratic equation we can find the roots of p(x) and so now we have the roots of f as required. x= 5+i, 5-i, 2-2i, 2+2i

PL
Answered by Patrick L. Further Mathematics tutor

2305 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that 2^(6n)+3^(2n-2) is divsible by 5. (AS Further pure)


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning