You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.

Since x=5+i is a solution to f(x)=0 we then know that x=5-i must also be a solution to f(x)=0, by the complex conjugate root theorem.Now we can break f down into the product of a polynomial and these two known roots;f(x)=(x-(5+i))(x-(5-i))p(x), where p(x) is to be found. Expanding brackets then gives us that;f(x)=(x^2-10x+26)p(x) We can then divide f(x) by (x-10x+26) to find p(x), and hence express f as the product of two quadratic polynomials. f(x)=(x^2-10x+26)(x^2-4x+8)Then by using the quadratic equation we can find the roots of p(x) and so now we have the roots of f as required. x= 5+i, 5-i, 2-2i, 2+2i

PL
Answered by Patrick L. Further Mathematics tutor

1913 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Why does matrix multiplication seem so unintuitive and weird?!


Given that the quadratic equation x^2 + 7x + 13 = 0 has roots a and b, find the value of a+b and ab.


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences