Differentiate w.r.t x the expression arccos(x).

Using implicit differentiation, let y equal arccos(x) : y=arccos(x). So x = cos(y), and dx/dy = -sin(y). dy/dx is therefore -1/sin(y). from trig indentities: sin(y) = sqrt(1-cos^2(y)). Substituting gives dy/dx = -1/sqrt(cos^2(y)) which is the derivative of arccos.

DP
Answered by Daniel P. Further Mathematics tutor

4335 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that z = a + bj, find Re(z/z*) and Im(z/z*).


Find the determinant of a 3x3 square matrix


How do I solve a simultaneous equation with more unknowns than equations?


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning