Differentiate w.r.t x the expression arccos(x).

Using implicit differentiation, let y equal arccos(x) : y=arccos(x). So x = cos(y), and dx/dy = -sin(y). dy/dx is therefore -1/sin(y). from trig indentities: sin(y) = sqrt(1-cos^2(y)). Substituting gives dy/dx = -1/sqrt(cos^2(y)) which is the derivative of arccos.

DP
Answered by Daniel P. Further Mathematics tutor

4338 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.


A curve has the equation (5-4x)/(1+x)


Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x


How can we solve a limit having an indetermination of the type 0/0 or infinity divided by infinity?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning