A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce

Energy
GPE of the ball on the bridge: MGH = 1 * 9.81 * 20 =196 J
energy lost to drag = F * D = 2 * 20 = 40 J
Velocity of the ball just before impact =sqr(2*(196-40)/1) =17.66 m/s
Velocity of the ball just after impact = 17.660.5 = 8.83 m/s
Kinetic energy just after impact 0.5 * 1 * 8.83^2 =39 J
Equation for final height (using energy)
KE = Drag energy + GPE
39 = 2
H + 19.81H
H=3.30m

MD
Answered by Max D. Further Mathematics tutor

2084 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


Prove that 27(23^n)+17(10^2n)+22n is divisible by 11 for n belongs to the natural numbers


Prove by induction that n! > n^2 for all n greater than or equal to 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning