If a ball is launched at ground level at a velocity v and angle θ, find an expression for it's height at horizontal distance x.

Firstly it must be understood that vertical and horizontal motion can be treated as independent, as they are perpendicular to each other (and acceleration due to gravity only affects the y component of velocity). So considering vertical forces, an acceleration of -g (-9.81ms-2) acts in the positive y direction. The vertical component of velocity can therefore be found with SUVAT (equations for constant acceleration). We know initial velocity in the positive y direction 'uy' = vsin(θ), acceleration 'a' = -g, time is known as 't' and we are trying to find vertical displacement 'y' (using y instead of the normal 's' for displacement), so we can use y=uyt + (1/2)at2=vsin(θ)t - (1/2)gt2.
We know everything in this expression apart from t, so using that the horizontal velocity is constant at ux=vcos(θ), use x=uxt + (1/2)at2=vcos(θ)t + (1/2)at2 , again where 'x' is horizontal displacement but where a=0 as there are no horizontal forces (so x=vcos(θ)t). Therefore we can rearrange for t=x/vcos(θ), then insert this into the y equation, so y=(vsin(θ)x)/vcos(θ) - (g/2)(x2/(vcos(θ))2), or more simply y=xtan(θ)-(g/2)(x/vcos(θ))2.

OP
Answered by Oscar P. Physics tutor

3218 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the photo-electric effect and what impact did it have on the development of Quantum Mechanics?


A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?


The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.


Experimentally, how would you calculate the Young's modulus of a material?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning