If a ball is launched at ground level at a velocity v and angle θ, find an expression for it's height at horizontal distance x.

Firstly it must be understood that vertical and horizontal motion can be treated as independent, as they are perpendicular to each other (and acceleration due to gravity only affects the y component of velocity). So considering vertical forces, an acceleration of -g (-9.81ms-2) acts in the positive y direction. The vertical component of velocity can therefore be found with SUVAT (equations for constant acceleration). We know initial velocity in the positive y direction 'uy' = vsin(θ), acceleration 'a' = -g, time is known as 't' and we are trying to find vertical displacement 'y' (using y instead of the normal 's' for displacement), so we can use y=uyt + (1/2)at2=vsin(θ)t - (1/2)gt2.
We know everything in this expression apart from t, so using that the horizontal velocity is constant at ux=vcos(θ), use x=uxt + (1/2)at2=vcos(θ)t + (1/2)at2 , again where 'x' is horizontal displacement but where a=0 as there are no horizontal forces (so x=vcos(θ)t). Therefore we can rearrange for t=x/vcos(θ), then insert this into the y equation, so y=(vsin(θ)x)/vcos(θ) - (g/2)(x2/(vcos(θ))2), or more simply y=xtan(θ)-(g/2)(x/vcos(θ))2.

OP
Answered by Oscar P. Physics tutor

3108 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the electromagnetic spectrum. Explain (i) how the mercury atoms become excited and (ii) how the excited atoms emit photons.


How do you explain why puddles evaporate on cold days ?


An exo-planet orbits its local star, of mass 2.00x10^30kg, in a steady circular orbit of radius 8.00x10^8km. Calculate the orbital period of the star, in years.


In some SUVAT questions, they ask for 2 time solutions and I can only find 1. What am I missing?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning