If a ball is launched at ground level at a velocity v and angle θ, find an expression for it's height at horizontal distance x.

Firstly it must be understood that vertical and horizontal motion can be treated as independent, as they are perpendicular to each other (and acceleration due to gravity only affects the y component of velocity). So considering vertical forces, an acceleration of -g (-9.81ms-2) acts in the positive y direction. The vertical component of velocity can therefore be found with SUVAT (equations for constant acceleration). We know initial velocity in the positive y direction 'uy' = vsin(θ), acceleration 'a' = -g, time is known as 't' and we are trying to find vertical displacement 'y' (using y instead of the normal 's' for displacement), so we can use y=uyt + (1/2)at2=vsin(θ)t - (1/2)gt2.
We know everything in this expression apart from t, so using that the horizontal velocity is constant at ux=vcos(θ), use x=uxt + (1/2)at2=vcos(θ)t + (1/2)at2 , again where 'x' is horizontal displacement but where a=0 as there are no horizontal forces (so x=vcos(θ)t). Therefore we can rearrange for t=x/vcos(θ), then insert this into the y equation, so y=(vsin(θ)x)/vcos(θ) - (g/2)(x2/(vcos(θ))2), or more simply y=xtan(θ)-(g/2)(x/vcos(θ))2.

OP
Answered by Oscar P. Physics tutor

2945 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.


A car of mass 1500kg is travelling at 10 ms-1 along a horizontal road. A brake force of 3000N brings it to rest. Calculate the deceleration of the car and the distance travelled by the car whilst decelerating.


What is a stationary wave?


Bernard says that a mass executing uniform circular motion is not accelerating as it's speed is not changing. Which parts of his statement are correct and which are false. For those which are false state why they are and give the correct version.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences