If a ball is launched at ground level at a velocity v and angle θ, find an expression for it's height at horizontal distance x.

Firstly it must be understood that vertical and horizontal motion can be treated as independent, as they are perpendicular to each other (and acceleration due to gravity only affects the y component of velocity). So considering vertical forces, an acceleration of -g (-9.81ms-2) acts in the positive y direction. The vertical component of velocity can therefore be found with SUVAT (equations for constant acceleration). We know initial velocity in the positive y direction 'uy' = vsin(θ), acceleration 'a' = -g, time is known as 't' and we are trying to find vertical displacement 'y' (using y instead of the normal 's' for displacement), so we can use y=uyt + (1/2)at2=vsin(θ)t - (1/2)gt2.
We know everything in this expression apart from t, so using that the horizontal velocity is constant at ux=vcos(θ), use x=uxt + (1/2)at2=vcos(θ)t + (1/2)at2 , again where 'x' is horizontal displacement but where a=0 as there are no horizontal forces (so x=vcos(θ)t). Therefore we can rearrange for t=x/vcos(θ), then insert this into the y equation, so y=(vsin(θ)x)/vcos(θ) - (g/2)(x2/(vcos(θ))2), or more simply y=xtan(θ)-(g/2)(x/vcos(θ))2.

OP
Answered by Oscar P. Physics tutor

3336 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


Why does a skydiver go through two different terminal velocities?


A ball is initially at rest and is dropped from a height of 10m. Calculate the velocity of the ball when it reaches the ground


Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning