The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.

Firstly, we must clearly set out the information we have. The particle in question is a proton, which has a mass of 1.67e-27 kg, and a charge of 1.6e-19 C. The path it takes has a circumference of 27000m, meaning the radius of its path is (27000/(2pi)), which is 4297m. The speed it is travelling at is c/10, or 3e7 m/s. The particle takes a circular path, meaning there must be a centripetal force acting on it, and this is given by F = (mv^2)/r. In addition the charged particle is moving through a magnetic field, which means it experiences a force perpendicular to its travel, given by F = Bqv, where B is the magnetic flux density, q is the charge of the particle, and v is the velocity it is travelling at. This is the only force that can provide the centripetal force required for the proton to maintain its path, meaning the above two equations must be equal: (mv^2)/r = Bqv. We want to find the value of B, so rearranging the above equation, we find that: B=(mv)/(rq) =(1.67e-27 * 3e7)/(4297 * 1.6e-19) = 7.29e-5 T

AM
Answered by Aashish M. Physics tutor

7876 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units


A ball with radius 10cm is filled with an ideal gas at pressure 2*(10)^5Pa and temperature 300K. The volume of the gas is changed at constant pressure so that the radius of the ball is reduced with 1cm. Find the amount of gas and the new temperature


How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?


Describe the energy changes in the 4 stages of a bungee jump - at the top, in freefall, when the cord is stretching and at the bottom


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning