The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.

Firstly, we must clearly set out the information we have. The particle in question is a proton, which has a mass of 1.67e-27 kg, and a charge of 1.6e-19 C. The path it takes has a circumference of 27000m, meaning the radius of its path is (27000/(2pi)), which is 4297m. The speed it is travelling at is c/10, or 3e7 m/s. The particle takes a circular path, meaning there must be a centripetal force acting on it, and this is given by F = (mv^2)/r. In addition the charged particle is moving through a magnetic field, which means it experiences a force perpendicular to its travel, given by F = Bqv, where B is the magnetic flux density, q is the charge of the particle, and v is the velocity it is travelling at. This is the only force that can provide the centripetal force required for the proton to maintain its path, meaning the above two equations must be equal: (mv^2)/r = Bqv. We want to find the value of B, so rearranging the above equation, we find that: B=(mv)/(rq) =(1.67e-27 * 3e7)/(4297 * 1.6e-19) = 7.29e-5 T

AM
Answered by Aashish M. Physics tutor

7345 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe, using a diagram, the forces acting on the system of an object tethered to a string, rotating around a fixed point in free space. Will the string ever become horizontal?


What is damping in Simple Harmonic Motion?


Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).


A cyclist rides 10km. In the first 5km, they climb a hill, averaging 10km/h. In the second 5km, they descend the hill, averaging 30km/h. What is their average speed over the full 10km?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences