Let f be a function defined in the interval (1,\infty) as f(x)=\integral_{e} ^{x^2} t/ln(t) dt. Find the equation of the tangent line to the graph of f at the point whose x-coordinate is sqrt{e}.

The equation of the tangent line to the graph of the function y=f(x) at the point whose x-coordinate is sqrt{e} is given by y-yf=m(x-xf), where xf=sqrt{e}, yf=f(sqrt{e})=integral_{e}^{e} t/ln(t) dt = 0 and m=f'(sqrt{e})=[x^22x/ln(x^2)]x=sqrt{e}=2esqrt{e}/ln(e)=2esqrt{e}. To calculate m we used the Fundamental theorem of calculus.Then, the tangent line has equation y=2esqrt{e}(x-sqrt{e}), so y=2e*sqrt{e}x-2e^2.

RM
Answered by Roberta M. Italian tutor

1645 Views

See similar Italian A Level tutors

Related Italian A Level answers

All answers ▸

How do we use the subjunctive?


Where can I find the Italian topical articles useful for the oral of A Level?


Talk about your ideal day using conditional verbs and, if possible, the subjunctive.


How do you distinguish between transitive and intransitive verbs?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning