Let f be a function defined in the interval (1,\infty) as f(x)=\integral_{e} ^{x^2} t/ln(t) dt. Find the equation of the tangent line to the graph of f at the point whose x-coordinate is sqrt{e}.

The equation of the tangent line to the graph of the function y=f(x) at the point whose x-coordinate is sqrt{e} is given by y-yf=m(x-xf), where xf=sqrt{e}, yf=f(sqrt{e})=integral_{e}^{e} t/ln(t) dt = 0 and m=f'(sqrt{e})=[x^22x/ln(x^2)]x=sqrt{e}=2esqrt{e}/ln(e)=2esqrt{e}. To calculate m we used the Fundamental theorem of calculus.Then, the tangent line has equation y=2esqrt{e}(x-sqrt{e}), so y=2e*sqrt{e}x-2e^2.

RM
Answered by Roberta M. Italian tutor

1327 Views

See similar Italian A Level tutors

Related Italian A Level answers

All answers ▸

What are the tips to understand the meaning of an Italian saying/idiom if I have never encountered it before?


What is the "impersonal si" and does it translate into "yes" in English?


How do I properly introduce myself using a formal register in Italian?


What does Montale mean when he refers to life consisting of 'following a wall with shards of bottles embedded in the top'?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences