Given that, dy/dx = 6x^2 - 3x + 4, and y = 14 when x = 2, express y in terms of x.

dy/dx = 6x2 - 3x + 4
To retrieve the original function y from dy/dx you have to integrate the derivative with respect to x.
y = ∫(dy/dx)dxy = ∫(6x2 - 3x + 4)dx
To integrate, the power is raised by one and the whole term is then divided by the new power on x. The constant of integration is to be included since this is indefinite integration.y = 6x3/3 - 3x2/2 + 4x + cy = 2x3 - 3x2/2 + 4x + c
Since values for y and x are given, they can be substituted into the function to solve for c.y = 14 and x = 214 = 2(2)3 - 3(2)2/2 + 4(2) + c14 = 2(8) - 3(4)/2 + 8 + c14 = 16 - 6 + 8 + c14 = 18 + cc = -4Evaluating the function yields a value of c = -4.This value of c = -4 is written back into the function of y to give the final answer:y = 2x3 - 3x2/2 + 4x - 4

CB
Answered by Ciaran B. Maths tutor

5986 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Solve log_2(3x + 7) = 3 + log_2(x – 1), x > 1.


The line, L, makes an angle of 30 degrees with the positive direction of the x-axis. Find the equation of the line perpendicular to L, passing through (0,-4).


Differentiate 5x^2 - 7x +9


Given g(x) = 4* sin (3*x), find the value of g'(pi/3).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning