Given that, dy/dx = 6x^2 - 3x + 4, and y = 14 when x = 2, express y in terms of x.

dy/dx = 6x2 - 3x + 4
To retrieve the original function y from dy/dx you have to integrate the derivative with respect to x.
y = ∫(dy/dx)dxy = ∫(6x2 - 3x + 4)dx
To integrate, the power is raised by one and the whole term is then divided by the new power on x. The constant of integration is to be included since this is indefinite integration.y = 6x3/3 - 3x2/2 + 4x + cy = 2x3 - 3x2/2 + 4x + c
Since values for y and x are given, they can be substituted into the function to solve for c.y = 14 and x = 214 = 2(2)3 - 3(2)2/2 + 4(2) + c14 = 2(8) - 3(4)/2 + 8 + c14 = 16 - 6 + 8 + c14 = 18 + cc = -4Evaluating the function yields a value of c = -4.This value of c = -4 is written back into the function of y to give the final answer:y = 2x3 - 3x2/2 + 4x - 4

CB
Answered by Ciaran B. Maths tutor

5982 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

How do you solve integrals which are the result of a chain rule e.g. the integral of sin(2x+1)


dy/dx = 6x^2 - 3x + 4 when y=14 x=2 Find y in terms of x


Solve algebraically the following system of equations: 4x + 5y = -3; 6x - 2y = 5


a) Factorise: 2x^2-72, and hence b) find the y-intercept of the line with the equation: y=(2x^2-72)/(4x-24)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning