People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.

Question 1 : Find the acceleration of the lift.Implementing Newton's Second Law we have : F net =Mα lift --->T-F A -F B -Mg =Mα lift ---> α lift =( T-F A -F B -Mg )/M (1)Substituting the relevant values of the forces given by the question we get that α lift = 2.75 m/s 2 ( where g= 9.81 m/s 2 )Question 2 : Find the masses of people A and B.Normally most students would equal the reading of the scale with the multiplication if the mass of the person with gravitational acceleration. This is not the case!! The person also has an upward acceleration equal to the lift's.Again by Newton's second Law we obtain : Person A F A - m A g = m A α lift ---> m A = F A /(g + α lift ) ----> m A = 57.3 kgPerson B F B - m B *g = m A lift ---> m B = F B /(g + α lift ) ----> m B =39.8 kgThis problem although not advanced or complicated can lead to misleading results if students have learned to work mechanically based on solved problems they have seen. As i stated in my description my goal is to avoid that and develop an analytical thinking of the students in order to spot tricky questions like this. Otherwise they would think their solution provided is correct.

GN
Answered by Geri N. Physics tutor

2027 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Show that gravitational force within a nuclei is negilible compared with the electric repulsion.


What are the postulates of special relativity?


The vehicle accelerates horizontally from rest to 27.8 m s–1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider has a mass of 82 kg. 1. Calculate the average acceleration during the 4.6 s time interval.


How does a thermal nuclear reactor work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning