Particle A (60kg) moves right at 50m/s. It collides with particle B (250kg) moving left at 10m/s. If after the collision particle A moves left at 20m/s, calculate the final velocity of particle B

First the total initial momentum of the particle system is calculated. Treat right as the positive x-direction and left as the negative x-direction. Then:Total initial momentum (Pi) = Inital momentum of A + Intital momentum of BPi = (60kg)(+50ms^-1) + (250kg)(-10ms^-1) = (3000kg ms^-1) + (-2500kg ms^-1) = +500kg ms^-1Conservation of momentum:Total inital momentum (Pi) = Total final momentum (Pf)Pf = (60kg)(-20ms^-1) + (250kg)(vB) = (-1200kgms^-1) + (250kg vB) =500kgms^-1where vB is the unknown final velocity of particle B.Rearranging the above to make vB the subject:vB = ( 500kgms^-1 - -1200kgms^-1)/(250kg) = (1700kgms^-1)/(250kg) = 6.8ms^-1

OL
Answered by Oliver L. Physics tutor

1656 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Where does the formula for gravitational potential come from? Why the minus sign?


You are in a vacuum chamber, and you drop a feather and a bowling ball (initially at rest) from a great height. Which will hit the ground first?


Resolving the forces for an object suspended on two strings.


Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences