Particle A (60kg) moves right at 50m/s. It collides with particle B (250kg) moving left at 10m/s. If after the collision particle A moves left at 20m/s, calculate the final velocity of particle B

First the total initial momentum of the particle system is calculated. Treat right as the positive x-direction and left as the negative x-direction. Then:Total initial momentum (Pi) = Inital momentum of A + Intital momentum of BPi = (60kg)(+50ms^-1) + (250kg)(-10ms^-1) = (3000kg ms^-1) + (-2500kg ms^-1) = +500kg ms^-1Conservation of momentum:Total inital momentum (Pi) = Total final momentum (Pf)Pf = (60kg)(-20ms^-1) + (250kg)(vB) = (-1200kgms^-1) + (250kg vB) =500kgms^-1where vB is the unknown final velocity of particle B.Rearranging the above to make vB the subject:vB = ( 500kgms^-1 - -1200kgms^-1)/(250kg) = (1700kgms^-1)/(250kg) = 6.8ms^-1

OL
Answered by Oliver L. Physics tutor

1986 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the total capacitance of a circuit containing a 3microfarad capacitor and a 2microfarad capacitor in series.


What determines the frequency of oscillation of a (loaded) spring?


Use band theory to explain the changes in the resistance of an intrinsic semiconductor as temper changes.


An object is let in free fall from a platform 20m high above Earth's surface. Describe the event in terms of energy and thus determine the speed of the object when it hits ground. Air resistance is negligible and gravitational acceleration is constant.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning