Prove De Moivre's by induction for the positive integers

First we check the formula for our first case, n=1 where (cosx + isinx)n =cosnx + isinnx (cosx + isinx)1 = cos(1x) + isin(1x) - holds true for n=1 next we assume true for our case n=k(cosx + isinx)k = coskx + isinkxnext we show that if the case for n=k is true, then the case n=k+1 is true.by inputting n=k+1 we get (cosx+isinx)(k+1)=(cosx+isinx)(cosx+isinx)know as we assumed for n=k ,this equals (cosx+isinx)(coskx+isinkx)this gives cosxcoskx +icosxsinkx +isinxcoskx -sinxsinkxsimplifying to (coskxcosx -sinxsinkx) + i(cosxsinkx + sinxcoskx)finally through the compound angle formulae we reach our desired result: (cosx+isinx)k+1 = cos((k+1)x) + isin((k+1)x) conclusion: If n=k holds true, then n=k+1 holds true. Since n=1 holds true we have now shown that De Moivre's theorem holds true for all positive integers.

HS
Answered by Harry S. Further Mathematics tutor

3373 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


Solve the second order differential equation d^2y/dx^2 - 4dy/dx + 5y = 15cos(x), given that when x = 0, y = 1 and when x = 0, dy/dx = 0


Prove that matrix multiplication is not commutative.


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning