Prove De Moivre's by induction for the positive integers

First we check the formula for our first case, n=1 where (cosx + isinx)n =cosnx + isinnx (cosx + isinx)1 = cos(1x) + isin(1x) - holds true for n=1 next we assume true for our case n=k(cosx + isinx)k = coskx + isinkxnext we show that if the case for n=k is true, then the case n=k+1 is true.by inputting n=k+1 we get (cosx+isinx)(k+1)=(cosx+isinx)(cosx+isinx)know as we assumed for n=k ,this equals (cosx+isinx)(coskx+isinkx)this gives cosxcoskx +icosxsinkx +isinxcoskx -sinxsinkxsimplifying to (coskxcosx -sinxsinkx) + i(cosxsinkx + sinxcoskx)finally through the compound angle formulae we reach our desired result: (cosx+isinx)k+1 = cos((k+1)x) + isin((k+1)x) conclusion: If n=k holds true, then n=k+1 holds true. Since n=1 holds true we have now shown that De Moivre's theorem holds true for all positive integers.

HS
Answered by Harry S. Further Mathematics tutor

3869 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

z = 50 / (3+4i). What is z in a+bi form?


What modules have you done before?


Integrate f(x) = 1/(1-x^2)


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning