Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0

Set up the auxiliary equation by letting (dy/dx) = m
So we have: m2 + 3m + 2 = 0
Solve for m and we get: (m+1)(m+2) = 0Therefore, m1=-1 and m2=-2
Now we see we have 2 different real numbers as the solutions to our auxiliary equation. So employ the GS in the form of: y = Aem1t + Bem2t
Therefore we have the GS to our 2nd ODE given above to be: y = Ae-t + Be-2t

IG
Answered by Isaac G. Further Mathematics tutor

2233 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find all the cube roots of 1


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


Solve the second order differential equation d^2y/dx^2 - 4dy/dx + 5y = 15cos(x), given that when x = 0, y = 1 and when x = 0, dy/dx = 0


Simplify (2x^3+8x^2+17x+18)/(x+2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning