A positively charged particle enters a magnetic field oriented perpendicular to its direction of motion. Does the particle: A) Change its velocity, B) Change its speed, C) Accelerate in the direction of the magnetic field.

To answer this question you must use the magnetic field "Right Hand Rule". We know that if a charged particle enters a magnetic field it will experience a force ​perpendicular to both​ the magnetic field and its direction of motion.From this result we know that the particle experiences no force along its direction of motion thus no work is done on the particle by the magnetic field. This means that B is ​False​ since the kinetic energy of the particle can not change. This also shows that C is False​ since the field exerts a "Central Force" on the moving particle causing it to enter a circular trajectory.By elimination then, A is ​True​. Though the speed of the particle does not change, the direction does as the particle begins circular motion. Since the velocity depends on both the speed and the direction of motion of an object we see that the magnetic field must be causing a change in velocity of the particle.

Answered by Sam H. Physics tutor

14067 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.


Determine an approximate value for the acceleration of free fall using a tennis ball, metre ruler and a stopwatch.


If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.


The Σ0 baryon, composed of the quark combination uds, is produced through the strong interaction between a π+ meson and a neutron. π+ + n →Σ0 + X What is the quark composition of X?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy