Answers>Maths>IB>Article

Consider the functions f and g where f(x)=3x-5 and g(x)=x-2. (a) Find the inverse function for f. (b) Given that the inverse of g is x+2, find (g-1 o f)(x).

(a) In order to find the inverse of a function, it is easiest to swap x and y and solve for y. Here this would give, x=3y-5 => x+5=3y => (x+5)/3=y. Hence, f-1(x)=(x+5)/3. (b) Here it is important to remember the order in which to calculate the composition of a function and then slowly plugging in the required functions. This gives (g-1 o f)(x) = g-1(f(x))= g-1(3x-5)=3x-5+2=3x-3.

RM
Answered by Rebecca M. Maths tutor

2713 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How to prove that Integral S 1/(a^2+x^2) dx= 1/a arctan(x/a) + C ?


integrate arcsin(x)


Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


Given that y = arcos(x/2) find dy/dx of arccos(x/2) and hence find the integral from 0 to 1 of arcos(x/2)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences