Answers>Maths>IB>Article

The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.

Arithmatic term n, Un= U1+(n-1)d. Where U1 is the first term of the sequence and d is the common difference. U5=U1+4d=6. U1=6-4d. Sum of arithmatic terms up to term n, Sn=n/2(2U1+(n-1)d). S12=12/2(2(6-4d)+(12-1)d)=45. 6(12-8d+11d)=45. 12+3d=45/6. 3d=7,5-12=-4,5. d=-4.5/3=-1,5. U1=6-4*(-1,5)=6+6=12

JS
Answered by Jasmin S. Maths tutor

8690 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How do I show (2n)! >= 2^n((n!)^2) for every n>=0 by induction?


(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


Find cos4x in terms of cosx.


Let Sn be the sum of the first n terms of the arithmetic series 2 + 4 + 6 + ... i) Find S4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences