Answers>Maths>IB>Article

The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.

Arithmatic term n, Un= U1+(n-1)d. Where U1 is the first term of the sequence and d is the common difference. U5=U1+4d=6. U1=6-4d. Sum of arithmatic terms up to term n, Sn=n/2(2U1+(n-1)d). S12=12/2(2(6-4d)+(12-1)d)=45. 6(12-8d+11d)=45. 12+3d=45/6. 3d=7,5-12=-4,5. d=-4.5/3=-1,5. U1=6-4*(-1,5)=6+6=12

JS
Answered by Jasmin S. Maths tutor

8745 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find a and b (both real) when (a+b*i)^2=i.


In the arthmetic sequence, the first term is 3 and the fourth term is 12. Find the common difference (d) and the sum of the first 10 terms.


Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3


Solve the differential equation csc(x)*dy/dx=exp(-y), given that y(0)=0. (Typical Math HL paper 3 question, Calculus optional topic)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning