Answers>Maths>IB>Article

The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.

Arithmatic term n, Un= U1+(n-1)d. Where U1 is the first term of the sequence and d is the common difference. U5=U1+4d=6. U1=6-4d. Sum of arithmatic terms up to term n, Sn=n/2(2U1+(n-1)d). S12=12/2(2(6-4d)+(12-1)d)=45. 6(12-8d+11d)=45. 12+3d=45/6. 3d=7,5-12=-4,5. d=-4.5/3=-1,5. U1=6-4*(-1,5)=6+6=12

JS
Answered by Jasmin S. Maths tutor

8928 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

3 girls and 4 boys are seated randomly on a bench. Find the probability that the girls set together and the boys sit together.


Determine the integral: ∫5x^4dx


Find an antiderivative to the function f(x) = e^x cos(x)


Find out the stationary points of the function f(x)=x^2*e^(-2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning