Answers>Maths>IB>Article

The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.

Arithmatic term n, Un= U1+(n-1)d. Where U1 is the first term of the sequence and d is the common difference. U5=U1+4d=6. U1=6-4d. Sum of arithmatic terms up to term n, Sn=n/2(2U1+(n-1)d). S12=12/2(2(6-4d)+(12-1)d)=45. 6(12-8d+11d)=45. 12+3d=45/6. 3d=7,5-12=-4,5. d=-4.5/3=-1,5. U1=6-4*(-1,5)=6+6=12

JS
Answered by Jasmin S. Maths tutor

9091 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

In Topic 5 (Statistics and Probability) what is the difference between mutually exclusive events and independent events?


The quadratic equation x^2 - 2kx + (k - 1) = 0 has roots α and β such that α^2 + β^2 = 4. Without solving the equation, find the possible values of the real number k.


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning