How do you find the cube root of z = 1 + i?

Firstly we express z in polar form:
 
z = Reiθ
 
where |z| = (Re2 + Im2)0.5 = (12 + 12)0.5 = 20.5
 
θ = arg z = tan-1(Im/Re) = tan-1(1/1) = π/4
 
Therefore z = (20.5)eiπ/4
 
We can add on any multiple of 2π to the argument of z without affecting the value of the complex number:
 
z = (20.5)ei(π/4 + 2πn)
 
where n is an integer
 
We then take cube roots of both sides (not forgetting to cube root the modulus R as well as the exponent):
 
z1/3 = (21/6)ei(π/12 + 2πn/3) = (21/6)ei(π + 8πn)/12
 
Because we are calculating the cube root, we expect three solutions. To find these three roots, we substitute in three consecutive integers into n. We will choose n = 0, 1, 2.
 
Solution 1 (with n=0): z1/3 = (21/6)ei(π/12)
Solution 2 (with n=1): z1/3 = (21/6)ei(3π/4)
Solution 3 (with n=2): z1/3 = (21/6)ei(17π/12)
 
We can convert these back into Cartesian form using:
 
z = R
(cosθ + i sinθ)
 
We find that:
 
Solution 1: z1/3 =(21/6)
(cos(π/12) + i sin(π/12)) = 1.08 + 0.291i
Solution 2: z1/3 = (21/6)
(cos(3π/4) + i sin(3π/4)) = -0.794 +0.794i
Solution 3: z1/3 = (21/6)*(cos(17π/12) + i sin(17π/12)) = -0.291-1.084i

AE
Answered by Aldwyn E. Further Mathematics tutor

17493 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])


Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences