Solve log_2(3x + 7) = 3 + log_2(x – 1), x > 1.

Begin by collecting log_2 terms.log_2(3x + 7) - log_2(x – 1) + = 3 Using the rule of log terms we getlog_2((3x+7)/(x-1)) = 3 (3x+7)/(x-1) = 233x+7 = 8(x-1)3x+7-8x+8 = 0 -5x+15 = 0 x= 3

CF
Answered by Catriona F. Maths tutor

2279 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Given that, dy/dx = 6x^2 - 3x + 4, and y = 14 when x = 2, express y in terms of x.


dy/dx = 6x^2 - 3x + 4 when y=14 x=2 Find y in terms of x


How do you solve integrals which are the result of a chain rule e.g. the integral of sin(2x+1)


Differentiate the equation: 3x^2 + 4x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning