Answers>Maths>IB>Article

f(x)=(2x+1)^0.5 for x >-0.5. Find f(12) and f'(12)

f(12)=((212)+1)^0.5=25^0.5=5 (simply substitute 12 into the original function)To find f'(12) we need to first find the derivative of the function and then we can substitute 12 in like we did before.f'(x)=0.5(2x+1)^-0.5*(2)=(2x+1)^-0.5=1/((2x+1)^0.5)f'(12)=1/(2(12)+1)^0.5=1/25^0.5=1/5

DR
Answered by Daniel R. Maths tutor

1210 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Identify and classify the stationary points of f using the second derivative test, where f is the function given below


Given that y = -16x2​​​​​​​ + 160x - 256, find the value of x giving the maximum value of y, and hence give this maximum value of y.


How do I integrate the volume of revolution between 0 and pi of y=sin(x)?


A geometric sequence has all its terms positive. The first term is 7 and the third term is 28.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences