Draw the I-V curves of both an ideal resistor and a filament bulb. Explain the key features of both.

Plot: I-V curve of an ideal resistor is a straight line with a positive gradient passing through (0,0)The I-V curve of an ideal resistor is a straight line because ideal resistors strictly obey Ohm's law (V = IR). The gradient is constant because the resistance does not change. The line should pass through the origin because no current can flow with zero applied potential difference.Plot: The I-V curve of a filament bulb is a sub-linear line passing through (0,0)The I-V curve of a filament bulb has a decreasing gradient as voltage increases. This is because as more voltage (or current) is applied, the temperature of the filament increases. The atoms making up the filament will therefore increase in energy and an increase in their movement. The rate of collisions between the electrons and the lattice will increase. The resistance of the filament therefore increases. The line should still pass through the origin because no current can flow with zero applied voltage.

JA
Answered by Jacob A. Physics tutor

8817 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Find current and voltage across resistors R1 and R2, when they connected in parallel and in series. A 12V battery is connected, R1=4Ω and R2=3Ω.


A projectile is fired out of a cannon at 50 km/s, at an angle of 30 degrees and an elevation of 10m from the ground. How long does it take for the projectile to hit the ground?


Calculate the threshold frequency for a metal with a work function of 3eV


How do I derive equations for Time of Flight and Range in Parabolic Motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning