An exoplanet, 0.01% the mass of the Sun, orbits a star 2 times the mass of the Sun at a distance of 1AU = 1.5x10^8 km. Using Newton's Law of Universal Gravitation, determine the force between the exoplanet and the star. Mass of Sun = 2x10^30kg.

This question is not particularly tricky as long as it is read carefully.
First, calculate the masses of the Star and the Exoplanet. Double the mass to find the star mass (M). To find the planet mass, multiply by 0.01/100 = 1x10-4. Mass of Star: m1 = 2 x 2x1030 = 4x1030kg Mass of Exoplanet: m2 = 1x10-4 x 2x1030 = 2x1026kg
Notice that the distance was given in km. You must convert to metres as the equation will only give the correct answer if Standard Units (SI units) are used. Therefore:
r = 1.5x1011m
Now all that's left to do it substitute into the equation:
F = Gm1m2/r2
Where:G = Gravitational Constant (from data sheet) = 6.67x10-11 m3 kg-1 s-2and m1, m2 and r are as they are above.
F = ((6.67x10-11)(4x1030)(2x1026))/((1.5x1011)2)
F = 2.372x1024NF = 2.4x1024N

TR
Answered by Thomas R. Physics tutor

1815 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

A drone is hovering at a constant height above the ground. The mass of the drone is 7 kg. The mass of the package is 3 kg. Calculate the upward force of the Drone.


Why does time slow down for someone standing at the bottom of a mountain compared to time for someone at the top of a mountain?


A launcher 1m tall fires tennis balls with a velocity of 15m/s at an angle of 20 degrees from horizontal. Neglecting air resistance, calculate the maximum height, time of flight and distance traveled by the ball.


If a footballer kicks a ball straight down the pitch at 6 ms-1 at an angle θ of 30° above the horizontal, what is the maximum height reached by the ball?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences