If a footballer kicks a ball straight down the pitch at 6 ms-1 at an angle θ of 30° above the horizontal, what is the maximum height reached by the ball?

First we must remember our equations of motion, (SUVAT equations).S = Displacement U = Initial velocity V = Final velocity A = Acceleration T = TimeV = U + ATS = UT + (1/2)AT2 V2 = U2 + 2ASS = (1/2)*(U+V)T
Then we must identify what information the question has given us.
The intial velocity (U) is 6ms-1 at an angle of 30° above the horizontal.
Using trigonometery we can then find the vertical and horizontal component of the velocity.(I would then use a diagram of a triangle and SOH CAH TOA to explain how to find the vertical and horizontal components)
Vertical inital velocity = 6ms-1 * Sin(30°) = 3ms-1Horizontal intial velocity = 6ms-1Cos(30°) = 3ms-1
As we are only interested in the height the ball reaches, we will use the vertical intial velocity as our value for U.We also know the acceleration due to gravity (A) is -9.8ms-2 and that at its maximum height the ball will have a final velocity (V) of 0ms-1 .
Using these values of V and A we can find the value of T using equation 1.
V = U + A
T0 = 3 + (-9.8)TT = 0.3 seconds
Now we can use this value for T alongside U and V in equation 4 to find the vertical distance the ball reaches (S).
S = (1/2)
(U+V)TS = (1/2)(3+0)
(0.3)S = 0.45m
The maximum height the ball reaches is 0.45m




Related Physics Scottish Highers answers

All answers ▸

An internet shopping company is planning to use drones to deliver packages.During a test the drone is hovering at a constant height above the ground.The mass of the drone is 5·50 kg. The mass of the package is 1·25 kg. See questions below


An exoplanet of mass 1.36x10^26 kg is orbiting a star of mass 3.2x10^31 kg at a distance of 1 AU. What is the magnitude of the gravitational force between the two?


What is a boson, as described by the standard model?


A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy