An exoplanet, 0.01% the mass of the Sun, orbits a star 2 times the mass of the Sun at a distance of 1AU = 1.5x10^8 km. Using Newton's Law of Universal Gravitation, determine the force between the exoplanet and the star. Mass of Sun = 2x10^30kg.

This question is not particularly tricky as long as it is read carefully.
First, calculate the masses of the Star and the Exoplanet. Double the mass to find the star mass (M). To find the planet mass, multiply by 0.01/100 = 1x10-4. Mass of Star: m1 = 2 x 2x1030 = 4x1030kg Mass of Exoplanet: m2 = 1x10-4 x 2x1030 = 2x1026kg
Notice that the distance was given in km. You must convert to metres as the equation will only give the correct answer if Standard Units (SI units) are used. Therefore:
r = 1.5x1011m
Now all that's left to do it substitute into the equation:
F = Gm1m2/r2
Where:G = Gravitational Constant (from data sheet) = 6.67x10-11 m3 kg-1 s-2and m1, m2 and r are as they are above.
F = ((6.67x10-11)(4x1030)(2x1026))/((1.5x1011)2)
F = 2.372x1024NF = 2.4x1024N

Related Physics Scottish Highers answers

All answers ▸

A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.


What is a boson, as described by the standard model?


A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


Calculate the gravitational force acting on the Moon, caused by the Earth, given that the masses of the Earth and the Moon are 6 x10^24 and 7.3 x10^22, respectively. The distance between the Earth and the Moon is 384 400 km.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy