An exoplanet, 0.01% the mass of the Sun, orbits a star 2 times the mass of the Sun at a distance of 1AU = 1.5x10^8 km. Using Newton's Law of Universal Gravitation, determine the force between the exoplanet and the star. Mass of Sun = 2x10^30kg.

This question is not particularly tricky as long as it is read carefully.
First, calculate the masses of the Star and the Exoplanet. Double the mass to find the star mass (M). To find the planet mass, multiply by 0.01/100 = 1x10-4. Mass of Star: m1 = 2 x 2x1030 = 4x1030kg Mass of Exoplanet: m2 = 1x10-4 x 2x1030 = 2x1026kg
Notice that the distance was given in km. You must convert to metres as the equation will only give the correct answer if Standard Units (SI units) are used. Therefore:
r = 1.5x1011m
Now all that's left to do it substitute into the equation:
F = Gm1m2/r2
Where:G = Gravitational Constant (from data sheet) = 6.67x10-11 m3 kg-1 s-2and m1, m2 and r are as they are above.
F = ((6.67x10-11)(4x1030)(2x1026))/((1.5x1011)2)
F = 2.372x1024NF = 2.4x1024N

TR
Answered by Thomas R. Physics tutor

1787 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

A golf ball is hit at an angle θ=45° to the horizontal with an initial speed v0. A vertical wall of height h=10m lies a distance d=20m away. Determine the minimum initial speed v0 required for the ball to clear the wall. Air resistance is negligible.


A circuit with a cell of voltage 6V and two resistors of resistance 6 Ohms each connected in parallel. What is the current through the Cell?


A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


Why does time slow down for someone standing at the bottom of a mountain compared to time for someone at the top of a mountain?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences