Solve x^2+8x-5=0 using completing the square

by completing the square we write the equation as (x+b/2)^2-b/2^2+c, in this case b=8 (the coefficient of x) and c=5 so we have (x+4)^2-16-5=0, which equals (x+4)^2-21=0. Now by rearranging we get (x+4)^2=21, which goes to x+4=+or-sqrt(21). Therefore x=sgrt21 -4 or x=-sqrt21 -4

LH
Answered by Lucy H. Further Mathematics tutor

2627 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What are the different forms of complex numbers and how do you convert between them?


How do I do a proof by induction?


Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0


How can we describe complex numbers ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning