Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.

Prove the basis to be true. Let n=1 and this gives f(1)=16+375=391 which is divisible by 17. Now assume that if we let n=k f(k) is divisible by 17. If we now let n=k+1 and prove f(k+1) is divisible by 17 we have proven the statement. Using f(k+1) won't give an answer, but if we subtract f(k) from f(k+1) we can rearrange the formula to get f(k+1)=8xf(k)+17x3x5^(2k+1). If the statement is true for n=k then we have shown it's true for n=k+1 and it is also true for n=1. Therefore it is true for all positive integers of n.

MH
Answered by Marijn H. Further Mathematics tutor

2775 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning