Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.

Prove the basis to be true. Let n=1 and this gives f(1)=16+375=391 which is divisible by 17. Now assume that if we let n=k f(k) is divisible by 17. If we now let n=k+1 and prove f(k+1) is divisible by 17 we have proven the statement. Using f(k+1) won't give an answer, but if we subtract f(k) from f(k+1) we can rearrange the formula to get f(k+1)=8xf(k)+17x3x5^(2k+1). If the statement is true for n=k then we have shown it's true for n=k+1 and it is also true for n=1. Therefore it is true for all positive integers of n.

MH
Answered by Marijn H. Further Mathematics tutor

2959 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


How can we solve a limit having an indetermination of the type 0/0 or infinity divided by infinity?


When and how do I use proof by induction?


I'm struggling with an FP2 First-Order Differential Equations Question (Edexcel June 2009 Q3) and the topic in general!


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning