Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.

Prove the basis to be true. Let n=1 and this gives f(1)=16+375=391 which is divisible by 17. Now assume that if we let n=k f(k) is divisible by 17. If we now let n=k+1 and prove f(k+1) is divisible by 17 we have proven the statement. Using f(k+1) won't give an answer, but if we subtract f(k) from f(k+1) we can rearrange the formula to get f(k+1)=8xf(k)+17x3x5^(2k+1). If the statement is true for n=k then we have shown it's true for n=k+1 and it is also true for n=1. Therefore it is true for all positive integers of n.

MH
Answered by Marijn H. Further Mathematics tutor

2615 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


Find values of x which satisfy the inequality: x^2-4x-2<10


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


By forming and solving a suitable quadratic equation, find the solutions of the equation: 3cos(2A)-5cos(A)+2=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning