Phosphorus(III) chloride molecules are pyramidal with a bond angle less than 109.5°. Explain why a phosphorus(III) chloride molecule has this shape and bond angle.

Phosphorous (III) Chloride consists of one phosphorous atom covalently linked to 3 individual chlorine atoms. Phosphorous is found in group 5 of the periodic table, hence it has 5 outer shell electrons, in which 3 of these participate in covalent bonds with the 3 chlorine atoms. The other 2 electrons are a lone pair of electrons. PCl3 has a pyramidal shape due to electrons on phosphorous arranged for minimal repulsion/maximal separation hence reducing the repulsion between them. Due to the presence of the lone pair the bond angle is further reduced to 107, as lone pair-bond pair repulsions are stronger than those of bond pair-bond pair repulsions.

TD
Answered by Tutor171831 D. Chemistry tutor

9802 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Suggest why Phenol is more reactive than Benzene in Electrophillic Substitution


Name an appropriate reducing agent to convert ethanal to ethanol


Why is the melting temperature of Magnesium higher than that of Sodium?


25cm^3 of 0.1M NaOH is reacted with 0.01M HCl until the equivalence point is reached. What volume of HCl was required to be added?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning