Answers>Maths>IB>Article

Differentiation from first principles

Differentiaiton from principles requires the use of the following formula which is provided in the formula booklet:

f'(x) = limh->0 ((f(x+h) - f(x))/(h))

Consider a function:

f(x) = 6x2

Clearly we know that the function differentiates to:

f'(x) = 12x 

by using the process of multiplying the coefficient by the power and then reducing the power by 1.

Using first principles however we must consider the formula mentioned previously.

f'(x) = limh->0 ((f(x+h) - f(x))/(h))

By computing the function for x+h and x we get:

f'(x) = limh->0 (6(x+h)2 - 6x2)/(h))

f'(x) = limh->0 (6(x2+2xh+h2) - 6x2)/(h))

f'(x) = limh->0 (6x2+12xh+6h2) - 6x2)/(h))

f'(x) = limh->0 (12xh+6h2)/(h))

We now cancel the h from above and below to get:

f'(x) = limh->0 12x+6h

Now consider the limit as h-> 0, clearly 12x remains unaffected but 6h will become 0 and is hence removed. Hence we are left with:

f'(x) = 12x

Which we know to be true from the trivial methods of differentiation considered earlier. 

HS
Answered by Hanumanth Srikar K. Maths tutor

3864 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How do I integrate the volume of revolution between 0 and pi of y=sin(x)?


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


The function f has a local extreme at point (1,4). If f''(x)=3x^2+2x, then find f(0)?


The velocity of a particle is given by the equation v= 4t+cos4t where t is the time in seconds and v is the velocity in m s ^-1. Find the time t when the particle is no longer accelerating for the interval 0≤t≤2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning