Explain why Sc3+(aq) is colourless, while Ni2+(aq) is green.

Colour arises due to partially filled d-orbitals. D-orbitals are split into two sub-orbitals with slightly different energies. When an electron in the lower energy d sub-orbital absorbs light, it moves up to the higher energy d-orbital. The energy gap between these two d sub-orbitals falls within the visible spectrum, which leads to colour. The electron configuration of Ni2+ is 1s22s22p63s23p6 3d8. Given that the d-orbital is full when there are ten electrons in it, the fact that Ni2+ has only eight electrons in the 3d orbital means that it has an impartially filled d-orbital, which explains why it is colourful. In Ni2+, when an electron in the lower energy 3d sub-orbital moves up to the higher energy sub-orbital, it absorbs red light, leading thus to the appearance of a green colour.Sc3+, on the other hand, has an electron configuration of 1s22s22p63s23p6 and since it does not have an impartially filled d-orbital, it is colourless.

CA
Answered by Carolina A. Chemistry tutor

17610 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Why is the boiling point of PH3 lower than that of NH3?


Explain why average bond enthalpies can be used for cyclohexane but not for benzene


Which are four factors affecting the rate of a chemical reaction and how do these affect the rate constant of the reaction?


Explain why successive ionization energies of an element increase


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences