Answers>Maths>IB>Article

Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.

Let P(n) be the proposition that 2n+2 + 32n+1 is a multiple of 7 for all positive integers of n.
Let n=123 + 33 = 8 + 27 = 35 = 7(5)This is divisible by 7.
Assume n=k2k+2 + 32k+1 = 7m
The above equation can be rearranged to 2k+2 = 7m - 32k+1, which will become useful later.
Test n=k+12(k+1)+2 + 32(k+1)+12k+3 + 32k+32(2k+2)+ 32k+32(7m - 32k+1)+ 32k+3 The above step is done using the rearrangement of the equation from the 'assume n=k' section. 14m - 2(32k+1) + 9(32k+1)14m + 7(32k+1)7(2m + 32k+1)The above is divisible by 7.
As P(1) was shown to be true, and when n=k was assumed true, P(k+1) was proven true, P(n) has been proven true for all positive integers of n by the principle of mathematical induction.

EP
Answered by Eashan P. Maths tutor

9197 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.


The quadratic equation 2x^2-8x+1 = 0 has roots a and b. Find the value of a + b and ab


What method of series convergence test is the correct test?


The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences