Answers>Maths>IB>Article

Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.

Let P(n) be the proposition that 2n+2 + 32n+1 is a multiple of 7 for all positive integers of n.
Let n=123 + 33 = 8 + 27 = 35 = 7(5)This is divisible by 7.
Assume n=k2k+2 + 32k+1 = 7m
The above equation can be rearranged to 2k+2 = 7m - 32k+1, which will become useful later.
Test n=k+12(k+1)+2 + 32(k+1)+12k+3 + 32k+32(2k+2)+ 32k+32(7m - 32k+1)+ 32k+3 The above step is done using the rearrangement of the equation from the 'assume n=k' section. 14m - 2(32k+1) + 9(32k+1)14m + 7(32k+1)7(2m + 32k+1)The above is divisible by 7.
As P(1) was shown to be true, and when n=k was assumed true, P(k+1) was proven true, P(n) has been proven true for all positive integers of n by the principle of mathematical induction.

Answered by Eashan P. Maths tutor

7852 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the differential equation csc(x)*dy/dx=exp(-y), given that y(0)=0. (Typical Math HL paper 3 question, Calculus optional topic)


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy