MYTUTOR SUBJECT ANSWERS

1465 views

Why do all objects fall at the same rate in a vacuum, independent of mass?

This is only the case in a vacuum because there are no air particles, so there is no air resistance; gravity is the only force acting. You can see it for yourselves with this easy experiment:

Take one piece of A4 paper and scrunch it up into a ball. Take two pieces of identical A4 paper and scrunch them up together into another ball. Your two paper balls should be of similar size but one twice as heavy as the other. Now drop them from the same height at the same time – you will see that they hit the ground at the same time! There is still air resistance but its effects are the same for both balls as they are the same size and shape. So it’s like there’s no air resistance at all!

Here are two different ways of explaining this phenomenon.

 

Explanation using equations:

Any object of mass m in a gravitational field (in this case Earth’s) has a gravitational force, F, acting on it:

F = (GmM) / R2

where G is the gravitational constant (this number does not change, it is the same throughout the whole universe), M is the mass of the Earth, and R  is the distance between the object and the centre of the Earth. It is this force which causes objects to fall to the ground in the first place.

Newton’s Second Law states that a force acting on an object will cause a change in speed, or acceleration, a, of the object:

F = ma        (Very important equation)

Therefore, the gravitational force will cause the object to accelerate towards the Earth. To find a formula for this acceleration, we combine the two equations for F above:

ma = (GmM) / R2

Then we can divide through by m to get:

a = (GM) / R2

As we can see, m does not appear in this formula, meaning that the acceleration of an object in free-fall does not depend on its mass.

 

“Wordy” explanation:

Gravity exerts a greater force on a heavy object than on a light object which is what you would expect. So why don’t heavy objects fall faster? The effect of this greater force on the acceleration of the object is cancelled out by the greater mass of the object. To help us understand this, let’s consider the following analogy. Imagine that you have to pull two boxes across a room; one box is twice as heavy as the other. In order to pull them at the same speed you need to pull the heavier box with twice as much force. Gravity pulling objects to the ground is like you pulling boxes across a room. Gravity needs to exert more force on heavier objects to make them fall as quickly as lighter objects.

Luke T. GCSE Biology tutor, GCSE Chemistry tutor, GCSE Physics tutor,...

2 years ago

Answered by Luke, an A Level Physics tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

57 SUBJECT SPECIALISTS

£22 /hr

Cordelia W.

Degree: Mathematical Science (Masters) - Durham University

Subjects offered: Physics, Maths+ 1 more

Physics
Maths
Further Mathematics

“I LOVE maths and believe I can pass on my love of the subject. I have been teaching maths and physics for years. I taught myself maths and physics, I helped my friends understand both subjects, I went on toteach a whole secondary scho...”

£24 /hr

Nathan L.

Degree: Materials Science (Masters) - Oxford, St Edmund Hall University

Subjects offered: Physics, Maths+ 1 more

Physics
Maths
Chemistry

“About Me: I'm a first year Materials science undergraduate at The University of Oxford. I loved learning about science and maths at school and hope my tutorials make you feel the same.  Structure: The key concept about tutorials i...”

£20 /hr

Peter H.

Degree: Mathematics (Bachelors) - Durham University

Subjects offered: Physics, Maths+ 2 more

Physics
Maths
Further Mathematics
.STEP.

“About me: I am a Mathematics student at Durham University, and I am currently in my 3rd year. I would very much like to give assistance and help students of all abilities to reach the goals they aspire to in Maths and Physics, whether...”

MyTutor guarantee

About the author

Luke T.

Currently unavailable: until 18/12/2015

Degree: Natural Sciences (Masters) - Durham University

Subjects offered: Physics, Science+ 2 more

Physics
Science
Chemistry
Biology

“About me: I am currently studying for a PGCE in Secondary Physics at Durham University. This meansI am training to be a secondary school science teacher, specialising in Physics. I achieved top grades at A Level and then went on to at...”

You may also like...

Posts by Luke

What is metallic bonding?

Why do all objects fall at the same rate in a vacuum, independent of mass?

Other A Level Physics questions

How are X-Rays produced?

What is the De Broglie wavelength of an electron given it has a kinetic energy of 1 eV? You are given the mass of an electron is 9.11x10^-31 kg and Planck's constant is 6.63x10^-34

A student is measuring the acceleration due to gravity, g. They drop a piece of card from rest, from a vertical height of 0.75m above a light gate. The light gate measures the card's speed as it passes to be 3.84 m/s. Calculate an estimate for g.

Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?

View A Level Physics tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok