pH and Kw question: A student dissolves 1.75g of a drain cleaner (based on NaOH) in water and makes the solution up to 100cm3. The student measures the solution pH as 13.60. Determine the percentage of NaOH in the drain cleaner, in terms of mass (g).

[H+] = 10-pH, so [H+] = 10-13.6 = 2.5 x 10-14 moldm-3. pH=-log10([H+]), so we have rearranged this to make [H+] the subject of the formula.Kw = [H+] x [OH-] = 1.0 x 10-14 moldm-3. This means that [OH-] = (1.0 x 10-14) / (2.5 x 10-14) [OH-] = 0.4 moldm-3Kw is the ionic product of water. Water, although neutral, is able to ionise slightly or partially dissociate, like weak acids do. This is shown in the equation: H2O + H2O H3O+ + OH-For weak acids, Ka = [H+] x [OH-] / [HA]. If we treat water as a weak acid, then [H2O] = 1000/18 = 55.6 moldm-3 (for 1dm3 or 1000g of water; concentration = volume/moles)Now, Ka x 55.6 moldm-3 = [H+] x [OH-]‘Ka x 55.6moldm-3’ = Kw. Although it can change with temperature, at 298K/25oC (room temperature) it is 1.00 x 10-14. Kw can be used to work out the relative concentrations of H+ and OH- ions in an aqueous solution: you will always have both types of ions present, just that in basic solutions you have more OH- ions than H+ ions (and vice versa for acidic solutions). n (moles of NaOH, in mol) = c (concentration of NaOH, in moldm-3) x v (volume of solution, in dm3); n = c x vVolume (dm3) = 100cm3/1000 = 0.1dm3n (NaOH) = 0.4 moldm-3 x 0.1dm3 = 0.04molm (mass of NaOH, in g) = n (moles of NaOH, in mol) x M (molecular mass of NaOH, in g/mol); m = n x MMolecular mass = 23 + 16 + 1 = 40m (NaOH) = 0.04 mol x 40 = 1.6g% mass = (mass of NaOH, g) / (total mass of drain cleaner added, g)% mass of NaOH = 1.6g / 1.75g x 100% = 91.428… = 91.4% to 3SF

LN
Answered by Laura N. Chemistry tutor

7345 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Draw the shape of an SF6 and SF4 molecule, indicating bond angles and any lone pairs which may influence these. What shape is the SF6 molecule?


What does ‘aromatic’ mean?


Explain why there is a general increase in the first ionisation energy across the third period.


Explain why first ionisation energy decreases down a group.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning