Answers>Maths>IB>Article

Given that w=x * e^-w use implicit differentiation to show that dw/dx=1/(e^w + x)

Given that w=xe-w use implicit differentiation to show that dw/dx = 1/(ew+x)Answer:Use product rule to simplify:dw/dx = x(de-w/dx) + e-w(dx/dx)Use chain rule to simplify even further:dw/dx = -xe-w(dw/dx) + e-wWe know from the original formula that w = xe-w. Therefore, replace:dw/dx = -w*(dw/dx) + e-wRe-arrange to isolate the derivative:(dw/dx)(1+w) = e-wdw/dx = (e-w)/(1+w)Re-arrange to achieve form asked for, knowing that x = wew from original formula given:dw/dx = 1/(ew+ wew)dw/dx = 1/(ew+x)q.e.d.

PG
Answered by Panagiota G. Maths tutor

1767 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Sketch the graph of x^2 - y^2 = 16


How do I show (2n)! >= 2^n((n!)^2) for every n>=0 by induction?


The sum of the first n terms of an arithmetic sequence is Sn=3n^2 - 2n. How can you find the formula for the nth term un in terms of n?


How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning