Answers>Maths>IB>Article

Differentiate, from first principles, y=x^2

According to first principles, the differential is found as the limit as h->0 of:[f(x+h)-f(x)] / hif we set our f to x^2, then we find that this expression becomes (x^2+2hx+h^2 - x^2)/hWhich simplifies to 2x+h. As h->0, this leaves us with 2x, which is the derivative of x^2

ME
Answered by Milo E. Maths tutor

2521 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

f(x)=sin(2x) for 0<x<pi, find the values of x for which f is a decreasing function


The quadratic function f(x) = p + qx – x^2 has a maximum value of 5 when x = 3. Find the value of p and the value of q.


How to find a modulus and argument of w that is a quotient of z1 and z2 such that z1 = 1 + root(3)i and z2 = 1+ i using modulus-argument form?


How do you integrate xln(x) between the limits of 0 and 2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning