Explain the photo-electric effect and describe how the intensity of light effects rate of electron emission.

The photo-electric effect is the way in which electrons are released from the surface of a metal when there is an incident light ray. The particle model of light, as part of wave-particle duality, suggests that light is made up of discrete packets of energy called photons, these photons have energy equal to the frequency of the light rays multiplied by the Planck constant. When the incident light rays strike the metal surface there are 1 to 1 interactions of photons and electrons in which surface electrons absorb the incident photon and become excited and can move to higher energy levels. Should the energy of the incident photons be above the work function of the material the electrons gain enough energy to overcome the attraction of surrounding nuclei and escape the metal being released as free photo-electrons. Intensity is an important factor to consider in for this effect, this intensity of a light ray indicates the photon number density in the ray hence rays of higher intensity contain more photons and, as interactions between photons and electrons are 1 to 1, increasing the intensity of light will increase the rate of photo-electron emission. It is important to note that the intensity of light is irrelevant in determining if electrons are released as if the frequency of the light is below the threshold frequency then photon energy is below the material's work function and no electrons can be released irrespective of ray intensity.

IW
Answered by Ira W. Physics tutor

3884 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

State Newton's Law of Gravitation


In an electric propulsion system, alpha particles are accelerated through a potential difference of 100kV at an average rate of 10^20 alpha particles per second. Calculate the average thrust the system can provide.


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


An infared wave has a wavelength of 1.5 x10^–6 m. The speed of this wave is 2.2 × 10^8 m/s. Calculate the frequency of the wave. Give your answer in standard form and to 2 significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning