When red light is shone on a metal, regardless of the intensity of this light, no current will flow. However if blue light is shone on this metal a current will flow. Why does this occur?

This problem can be solved by first considering the energy of a photon e = hf. ​A photon of red light lacks the sufficient energy to free an electron. However a photon of blue light has a higher frequency and thus has a higher energy. This allows for a photon of blue light to free an electron and thus allow for a current to flow when a large number of photons are sent towards the metal.

JP
Answered by Jonathan P. Physics tutor

5935 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units


What is the difference between a scalar and a vector? Give 3 examples of each.


Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.


What is the difference between plastic and elastic collision?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning