When red light is shone on a metal, regardless of the intensity of this light, no current will flow. However if blue light is shone on this metal a current will flow. Why does this occur?

This problem can be solved by first considering the energy of a photon e = hf. ​A photon of red light lacks the sufficient energy to free an electron. However a photon of blue light has a higher frequency and thus has a higher energy. This allows for a photon of blue light to free an electron and thus allow for a current to flow when a large number of photons are sent towards the metal.

JP
Answered by Jonathan P. Physics tutor

6300 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An electron moving at 1000 m/s annihilates with a stationary positron. What is the frequency of the single photon produced?


How many fission event occur per second if a Uranium 235 Nuclear Reactor outputs 210MW of energy? Average Binding Energy per Nucleon of Uranium 235- 7.6 MeV Average Binding Energy per Nucleon of Products-8.5 MeV


A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?


When a 470 micro farad capacitor is discharged through a fixed resistor R, the pd across it decreases by 80% in 45 s. Calculate the time constant of the circuit


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning